Kenneth Wiersema (kcw815@icloud.com)
2018-01-15 12:45:41

@Kenneth Wiersema has joined the channel

jack_chapman (jwc10101@gmail.com)
2018-01-15 12:45:42

@jack_chapman has joined the channel

Ethan Rininger (rinineth000@frogrock.org)
2018-01-15 12:45:42

@Ethan Rininger has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-15 12:45:42

@chrisrin has joined the channel

Kenneth Wiersema (kcw815@icloud.com)
2018-01-15 12:45:42

@Kenneth Wiersema set the channel purpose: To climb

kaedric_holt (kaedholt@gmail.com)
2018-01-15 13:58:04

@kaedric_holt has joined the channel

Cruz_Strom (cruzrstrom@gmail.com)
2018-01-15 14:57:17

@Cruz_Strom has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-15 15:05:57

The quintessential climb with others video from RI3D Team Cockamamie - dubbed by some as "the iron cross". https://www.youtube.com/watch?v=R8w5FLrORpo&feature=youtu.be

YouTube
} King Harkinian (https://www.youtube.com/user/Kirby00216)
chrisrin (chrisrin@microsoft.com)
2018-01-15 15:06:23

@chrisrin pinned a message to this channel.

} Chris Rininger (https://spartronics.slack.com/team/U2D6YT7E2)
coachchee (echee@bisd303.org)
2018-01-15 15:07:46

@coachchee has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-15 15:10:09

just to be clear, there is another rope spool on the other side

chrisrin (chrisrin@microsoft.com)
2018-01-15 15:11:23
} Andrew Peterson (https://spartronics.slack.com/team/U2URM44US)
chrisrin (chrisrin@microsoft.com)
2018-01-15 15:11:31

@chrisrin pinned a message to this channel.

} Andrew Peterson (https://spartronics.slack.com/team/U2URM44US)
2018-01-15 15:14:08

@chrisrin commented on @chrisrin’s file Winch picture from the video: Here's what I see:

  • just one CIM - seems quite possible for us too given the short distance to travel
  • wide hook connecting to the rung for stability, plus theirs has a whole rigid framework rather than a cable - I think a wide hook will also be needed by us (or two hooks separated by some space) + possibly need two cables / spools like they have for stability
  • dual spool rope winch - see above
  • looks like a versaplanentary BUT they have a significant gear/load reduction stage upstream from it - not sure we have the luxury of space on our robot that they're using on theirs, so a more compact gear/load reduction approach is likely warranted if the numbers allow it
chrisrin (chrisrin@microsoft.com)
2018-01-15 15:24:35
riyadth (riyadth@gmail.com)
2018-01-15 16:29:38

@riyadth has joined the channel

justice_james (jj@j-james.me)
2018-01-15 16:33:09

@justice_james has joined the channel

Mark Tarlton (mtarlton@acm.org)
2018-01-15 16:46:31

@Mark Tarlton has joined the channel

whobbs1496 (whobbs1496@gmail.com)
2018-01-15 16:49:17

@whobbs1496 has joined the channel

randy_groves (randomgrace@gmail.com)
2018-01-15 16:49:36

@randy_groves has joined the channel

andrew_peterson (peterand002@frogrock.org)
2018-01-15 16:53:56

@andrew_peterson has joined the channel

rose_bandrowski (rose.bandrowski@gmail.com)
2018-01-15 17:08:09

@rose_bandrowski has joined the channel

peter_hall (llahnhojretep@gmail.com)
2018-01-15 17:12:35

@peter_hall has joined the channel

Harper Nalley (nalleluc000@frogrock.org)
2018-01-15 17:23:56

@Harper Nalley has joined the channel

binnur (binnur.alkazily@gmail.com)
2018-01-15 17:39:48

@binnur has joined the channel

declan_freemangleason (declanfreemangleason@gmail.com)
2018-01-15 18:24:10

@declan_freemangleason has joined the channel

Kirsten_M (kirsten.martel@gmail.com)
2018-01-15 18:28:31

@Kirsten_M has joined the channel

john_sachs (johncsachs@gmail.com)
2018-01-15 19:04:06

@john_sachs has joined the channel

Darwin Clark (darwin.s.clark@gmail.com)
2018-01-15 21:09:19

@Darwin Clark has joined the channel

jack_chapman (jwc10101@gmail.com)
2018-01-15 21:33:08

@jack_chapman has left the channel

jack_chapman (jwc10101@gmail.com)
2018-01-15 21:33:13

@jack_chapman has joined the channel

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-15 21:40:49

@bill_bandrowski has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-16 00:54:02

Possible guides for running the climber rope up the lift - people seem to like them: Yongcun Self Adhesive Twist Lock Cable Management Wave Locks Adhesive Kurly Lock on ... https://www.amazon.com/dp/B01J6RDIQU/ref=cm_sw_r_sms_c_api_yWBxAb9A7G7CY

chrisrin (chrisrin@microsoft.com)
2018-01-16 07:39:51

Great insights into helping lift (with 2007 videos) around 32 minutes in: https://www.twitch.tv/videos/219027781

Twitch
dana_batali (dana.batali@gmail.com)
2018-01-16 09:17:00

@dana_batali has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-16 11:19:59

@jackchapman @andrewpeterson @Ethan Rininger The masses involved in climbing assist (500 lbs across three robots) are spooky to me safety-wise when it comes to prototyping and testing. Idea: What if we build a rough 1:4 scale model of that part of the field & robots and prototype initially with that? Bonus Question: Who can tell me the weight of a 1:4 scale model of a 120 lb. robot? Hint: It's not 120 divided by 4.

violet_advani (advanvio000@frogrock.org)
2018-01-16 11:40:02

@violet_advani has joined the channel

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-16 11:56:20

Something to consider regarding climbing: With the scissor lift, the upper part of the robot could be a square shape allowing you to add hanging bars on each side. Once the robot has lifted itself, two other robot may be able to climb our robot using the replicated bars on each side. Since most robots will have climbing capabilities, don't try to lift them, give them the ability to lift themselves.

chrisrin (chrisrin@microsoft.com)
2018-01-16 12:54:35

@bill great idea! Not sure about weight capacity of the lift, but worth considering

chrisrin (chrisrin@microsoft.com)
2018-01-17 10:46:01

Re: weight of scale models, in case we decide to pursue: www.alphalanding.com/rc-track/true-scale-weight-of-a-110-rc-car/

Jules Blythe (jrb3bird@gmail.com)
2018-01-17 17:15:53

@Jules Blythe has joined the channel

Sean_Williams (seanwilliams3.14@gmail.com)
2018-01-17 19:19:23

@Sean_Williams has joined the channel

andrew_peterson (peterand002@frogrock.org)
2018-01-17 19:24:08

Calculator spreadsheet www.chiefdelphi.com/media/papers/3188

chrisrin (chrisrin@microsoft.com)
2018-01-17 21:55:40

Here's a relevant post started by an FRC coach who was way off on his climbing winch calculations. The community helped him out, including pointing him to the linear mechanism tab of the JVN calculator we were looking at today... https://www.chiefdelphi.com/forums/showthread.php?t=161181&highlight=jvn

chrisrin (chrisrin@microsoft.com)
2018-01-17 22:00:35

Here's a set of recently shared engineering resources, including JVN + several others... https://www.chiefdelphi.com/forums/showthread.php?t=160323&highlight=jvn

Nora (wilsoele000@frogrock.org)
2018-01-17 22:21:14

@Nora has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-17 22:49:59

Insight into versaplanetary gearbox stages: https://www.chiefdelphi.com/forums/showthread.php?threadid=161563

chrisrin (chrisrin@microsoft.com)
2018-01-18 07:36:25

In prep for Friday, I threw some questions and possible actions into our working requirements spreadsheet. Next step is to decide which few things to tackle next.

chrisrin (chrisrin@microsoft.com)
2018-01-19 09:15:54

As we started to do last meeting, I used that JVN calculator + the Versaplanetary load ratings guide to come up with this proposed motor and gear ratio. The high ratio might surprise some, but with the fast-spinning 775pro it seems to work, AND we can just use the Versaplanetary gearbox without needing a separate additional gear reduction. Guidance I read stated the gears should be packed into the Versaplanetary as follows: the 10:1 goes closest to the motor, then 7:1, and finally the 3:1 as the third stage furthest from the motor and closest to the output shaft. I'm interested in other proposals - please play with the JVN calculator and see what you can come up with. Thanks!

2018-01-19 09:35:46

@chrisrin commented on @chrisrin’s file Climbing winch: proposed motor & gear ratio.png: I recommend reading this thread: https://www.chiefdelphi.com/forums/showthread.php?t=161225&highlight=versaplanetary+efficiency. I don't think the experienced people on this thread would be all that comfortable with my proposal 🙂. Here's an idea: will someone (or the group) come up with a solution involving two 775pros instead of 1, and we could use a versaplanetary gearbox on each, possibly with an additional gear reduction using sprockets/chain?

2018-01-19 10:06:27

@chrisrin commented on @chrisrin’s file Climbing winch: proposed motor & gear ratio.png: I'm really liking this alternative calculator. The instructions are good, and it is designed to let you optimize for different variables (including climbing speed). Check it out - we can look at this tonight. https://www.chiefdelphi.com/media/papers/3383?

Terry (terry@t-shields.com)
2018-01-19 10:26:15

@Terry has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-19 11:55:59

@channel I added a new tab to our requirements spreadsheet that includes key specs of the robot and field pieces + a conversion in case we decide to do a 1:4 model. The more I think about it, it really would not be that hard to create a rough scale model prototype for initial testing of "climb with friends" designs. Better than testing with ~500lbs 🙂. Here's a link to the requirements spreadsheet Andrew originally created after our first meeting: https://docs.google.com/spreadsheets/d/16UsQbuSxHZaBjMxUQS0OeBaFg87_fXKBlKat4cA1_Hs/edit?usp=sharing

Ethan Rininger (rinineth000@frogrock.org)
2018-01-19 16:19:25

Some parts of this are pretty useful

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-19 17:22:00

Thinking about hanging in a stable position using single point cables made me think of climber's "porta-ledge." Picture attached

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-19 17:38:57

Another ramp design (at the end of the video) https://youtu.be/slXdcFq59_k

YouTube
} WCP LLC (https://www.youtube.com/channel/UC98W6C_j1yR8SzDi1ws5Jyw)
bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-19 17:40:57

a cable climber example: https://youtu.be/miFmVdjzCEI

YouTube
} Ben J Nguyen (https://www.youtube.com/channel/UCjUOkeyD8b6yaJdups00iMg)
chrisrin (chrisrin@microsoft.com)
2018-01-19 23:11:04

@paul_vibrans I have searched the interwebs and not been able to find any video of a roller clutch in action that behaves the way you describe. I found some unidirectional transmissions that looked interesting and maybe similar, but not the mythical roller clutch (our name for it on the climber team) allowing different transmission speeds by reversing direction of the input shaft from the motor. All of what I just said is a long-winded way to say... We're going to need your help. 🙂 Andrew is going to work on a CAD incorporating the roller clutch as described, but I'm certain we'll need help finalizing the design. Thanks for teaching us a few things today!

chrisrin (chrisrin@microsoft.com)
2018-01-19 23:16:01

*Thread Reply:* One of these? https://www.amazon.com/Koyo-FCB-25-Roller-Clutch-Bearing/dp/B007EE3SFO

amazon.com
chrisrin (chrisrin@microsoft.com)
2018-01-19 23:47:23

*Thread Reply:* One other question about changing the motor direction - isn't that akin to stalling the motor until the motor starts spinning the other way? Anything we need to worry about? Since CIMs are more resilient than 775pros (at least out of the box), it seems like CIMs will be the way to go despite the weight and size disadvantage.

paul_vibrans (pvibrans@tscnet.com)
2018-01-19 23:11:17

@paul_vibrans has joined the channel

chrisrin (chrisrin@microsoft.com)
2018-01-20 00:46:49

@andrew_peterson If you have time, in addition to the design with the roller clutch, would you please do a variation that instead incorporates this 2-speed gearbox with ratio A at 25.90:1 and ratio B at 5.45:1? If you have time. CAD files are in the downloads section on AndyMark. Note: Shifting is done via pneumatic solenoid.

Here's the link to the gearbox: http://www.andymark.com/EVO-s/643.htm

chrisrin (chrisrin@microsoft.com)
2018-01-20 09:48:30

@paulvibrans @jackchapman @Ethan Rininger @violetadvani @jackchapman @SeanWilliams @billbandrowski @Kirsten_M I want to run something by you. If we used the Evo shifter mentioned in the previous post, including those gear ratios, then my calculations indicate a favorable solution with 2 CIMs and a spool diameter of 1.25 inches. The shifter is expensive, but we'd have it for other things in the future, and if we're really serious about climbing with friends then I feel like a beefy solution is called for anyway. Here's my math - what do you think?

chrisrin (chrisrin@microsoft.com)
2018-01-20 09:52:38

If you all agree, I'm inclined to ask the coach to order this thing right away so we get it ASAP and can build a solution with it. I like the idea of the roller clutch, but I just have a concern that the overall solution is complex / more custom than we may have time to design, build, test, iterate if it doesn't work, etc.

coachchee (echee@bisd303.org)
2018-01-20 10:14:00

FYI. We already have 4 of these :https://www.vexrobotics.com/vexpro/motion/ball-shifter.html

VEX Robotics
USD
$0.00
WEBSITE
<a href="http://vexrobotics.com">vexrobotics.com</a>
chrisrin (chrisrin@microsoft.com)
2018-01-20 10:24:26

I did look at that one. The 2.27 spread between each low gear and high gear option is not as ideal for our application as the 4.75 spread with the EVO and the selected high/low gear ratios. It would mean around 2 1/2 more seconds to gather the slack... not too bad, especially since we have it NOW. I'm sold - I recommend we use it. @andrew_peterson My request has changed. Please create a design variant that incorporates the vex ball shifter coach mentions above. If we select the right spool diameter, then we should be able to have a simple system of 2 CIMs, the shifter, the spool, and the pneumatic integration. If we want two spools as some have argued, then I think the solution is 2 CIMs, shifter, sprockets and chain to a separate shaft that both the spools are on, and the two spools (+pneumatics).

chrisrin (chrisrin@microsoft.com)
2018-01-20 10:25:41

@jack_chapman how do we find out the gear ratios of the ball shifters we have in stock? Also, on the website it says, "Note: A pneumatic shifting cylinder and fitting kit is not included in the Ball Shifter kit. Be sure to add these below in the "Pneumatic Cylinder & Fitting Options" category if needed." So need an inventory check on that if we go this direction - hopefully we have what we need.

chrisrin (chrisrin@microsoft.com)
2018-01-20 10:47:17

@andrew_peterson one more thing, our spool diameter will need to be somewhere between 0.5 and 1.5 inches depending on the gear ratios our ball shifters are set up with.

coachchee (echee@bisd303.org)
2018-01-20 10:56:56

The Vex 2 CIM ball shifter is 3.66:1 and 8.33 :1. 2.27 spread. We should have all the pneumatic cylinder and fittings. If you go this route please inform @peter_hall. The fittings and hose are not the standard size.

coachchee (echee@bisd303.org)
2018-01-20 11:02:07

FYI, we also have this system gearbox system. http://www.andymark.com/product-p/am-0916.htm

www.AndyMark.com
chrisrin (chrisrin@microsoft.com)
2018-01-20 11:07:01

Thanks. @andrew_peterson given gear ratios, I think a 0.5 winch spool diameter should work. Current is a bit higher than ideal, but from what I've read spikes somewhat over 40amps during a climb of a few seconds have been very common the past two years. Here are the numbers.

chrisrin (chrisrin@microsoft.com)
2018-01-20 11:45:33

Argh, I just thought about rope pileup from spooling that 11 feet of slack. It seems like there will be in the neighborhood of 50 to 75 wraps (depending on pileup pattern) with a 0.5 spool diameter. and that'll change the effective diameter of the spool from 0.5 to a diameter perhaps 3 times larger by the time the slack spooling is done... just in time for the climb... If the diameter is 1.5 inches by the start of the actual climb, then the numbers don't work - way too much current that would trip the 40-amp breaker. I think it makes sense to order the gear kits we need for the lowest gear option with the Vex ball shifter. Option 1: 64:20. They're not that expensive, so could order a couple of them for 2 robots. That gives us ~3.2:1 additional reduction in the gearbox itself & will allow us to have a larger winch spool like 1.25" without having a big separate gear reduction stage. Even with that, we might need 1.5:1 more reduction in the system somewhere. And here are yet again more numbers. Here is with the additional 1.5:1.

chrisrin (chrisrin@microsoft.com)
2018-01-20 11:55:40

If we want those different gears for the Vex ball shifter, here they are:

jack_chapman (jwc10101@gmail.com)
2018-01-20 13:20:35

The extra 1.5 to 1 does seem to be nessecary, and I don't think a 7 second climb is to bad. Would there still be space inside of the shifting gearbox for the extra gears?

chrisrin (chrisrin@microsoft.com)
2018-01-20 13:38:12

Needs to be researched- I think might need to be done via different diameter sprockets & chain from the gearbox output shaft to the shaft the spool(s) is/are on

2018-01-21 11:49:32

@coachchee commented on @chrisrin’s file Vex ball shifter gears.png: We can decide today what to order.

Ethan Rininger (rinineth000@frogrock.org)
2018-01-21 16:21:57

@jackchapman @SeanWilliams https://www.westmarine.com/buy/fse-robline--ocean-3000-dyneema-single-braid-line-gray--9486374?recordNum=3 Order 50 ft

westmarine.com
coachchee (echee@bisd303.org)
2018-01-21 17:04:27

Ordered .

chrisrin (chrisrin@microsoft.com)
2018-01-21 18:09:03

@paul_vibrans Here are the inputs to the gear ratio calculation: 450lbs for 3 robots, 2 CIMs, 1.5" diameter spool (due to 4mm rope), 30" slack & 20" climb under load. The commonly used JVN calculator tool indicates a gear ratio of 32:1 will result in ~4.5 seconds to gather slack & climb 20 inches, with current draw at a reasonable level. Please double check with your own spreadsheet. Thanks.

chrisrin (chrisrin@microsoft.com)
2018-01-21 18:51:34

As far as gearboxes, I like the sound of these vs. Versaplanetary. There are 4:1, 12:1, 16:1, 36:1, 48:1, and 64:1 options available. Supposedly the gears & their teeth are larger/stronger than the Vex VP's. www.andymark.com/CIM-Sport-p/am-cimsport.htm

chrisrin (chrisrin@microsoft.com)
2018-01-21 18:54:16

If any experienced folks know of a 2-CIM-single-shaft gearbox that supports ratios of 32:1 to 60:1 (or even 80:1). I looked at the Modulox, and it might work, but it seems to be designed for prototyping / hypermodularity, and so for many purposes it'll be larger than desired.

coachchee (echee@bisd303.org)
2018-01-21 18:54:26

Let me know what you guys want.

chrisrin (chrisrin@microsoft.com)
2018-01-21 19:08:14

I was hoping Paul could check the math / gear ratio. And I was also hoping someone would point out a two-CIM-single-output-shaft solution. Do you know what single speed gearboxes we have and what ratios they're at? We could do a reduction with a large sprocket on the output shaft and small sprocket on the shaft powering the winch, and that would be compatible with the typical drivetrain gearbox ratios.

coachchee (echee@bisd303.org)
2018-01-21 19:11:38

I don't. @whobbs1496 @Kenneth Wiersema @rosebandrowski @jackchapman Please check your inventory sheet or feel free to go to robotics room afterschool on Mon. Please respond back to Chris.

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:19:55

I think the only single speed two cim setup we have our the vex gearboxes I showed you today

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:20:11

They are two speed but can be setup as single speed

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:21:20

We can do dual 775pros and bag motors on the versa planetary

Kenneth Wiersema (kcw815@icloud.com)
2018-01-21 19:30:36

Any reason why you went with cims over 775 pro’s? Also, I might be presuming a bit here, but we might be able to create an adapter plate for the duel versa planetary system for cims. Otherwise Andymark has a few different solutions, but I don’t think any really fit the small option. /

chrisrin (chrisrin@microsoft.com)
2018-01-21 19:39:34

We've been leaning toward 2 CIMs due to stall resilience.

rose_bandrowski (rose.bandrowski@gmail.com)
2018-01-21 19:40:57

Is the climbing group ordering any aluminum angle brackets? just curious Will said you might be and I wanted to check

coachchee (echee@bisd303.org)
2018-01-21 19:42:13

Ask Kaedric Quartermaster.

chrisrin (chrisrin@microsoft.com)
2018-01-21 19:42:50

@whobbs1496 and @Kenneth Wiersema What is the largest reasonable reduction using sprockets/chain 2:1, 3:1, 5:1? 5:1 is getting to be a large sprocket.

on the bracket order question, I don't think we got there, though @jack_chapman might know otherwise

coachchee (echee@bisd303.org)
2018-01-21 19:45:05

I ordered al. angles. 3" x 3" x 0.375" 6061T6 Extruded Structural Aluminum Angle - 72" at Paul's request.

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:46:41

we might be able to use the versaplanetry dual motor adapter with two cims

chrisrin (chrisrin@microsoft.com)
2018-01-21 19:46:42

we spent a lot of time evaluating winch design options today - I do recall at the very end hearing some conversation about the stabilizing arms - current thinking there seems to be we need arms that are somehow released and then fall down via gravity. position on the robot is TBD because we need to understand constraints from the harvester design

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:47:05

its not deigned for it but using the right adapters it might work

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:48:43

If we used two of these (https://www.vexrobotics.com/vexpro/motion/gearboxes/217-4018.html) and one of these(https://www.vexrobotics.com/vexpro/motion/gearboxes/217-3141.html) we might be able to use two cims with one versa planetary gearbox

VEX Robotics
USD
$4.99
WEBSITE
<a href="http://vexrobotics.com">vexrobotics.com</a>
VEX Robotics
USD
$14.98
WEBSITE
<a href="http://vexrobotics.com">vexrobotics.com</a>
chrisrin (chrisrin@microsoft.com)
2018-01-21 19:50:08

not sure I trust it - single CIM or 775pro are the largest power sources in the load ratings

coachchee (echee@bisd303.org)
2018-01-21 19:51:05

Please check inventory. I believe I bought some Versaplanetary CIM adapters. Please finalize order on Mon.

chrisrin (chrisrin@microsoft.com)
2018-01-21 19:51:41

also, the spacing of the two inputs may not be wide enough for two cims - cims are quite a bit wider than 775pros

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:54:07

Just an idea we can look at

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 19:54:44

I'm pretty sure that's all we have for dual cims

chrisrin (chrisrin@microsoft.com)
2018-01-21 19:59:10

Do we have plenty of versaplanetary gear kits (e.g. enough for four VPs - 2 per robot - at a given gear ratio)? So if we need a ratio similar to 32:1, then we could pick 35:1, which would mean we need four 5:1 and four 7:1). If so, it seems like we could use them and pool their power via chain

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 20:01:08

We should have plenty

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 20:01:42

@rose_bandrowski was planning on using some for the intake but i don't know how many she needed

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 20:03:24

Based on the inventory we should have 10 1/2in hex output versa planetary gearboxes

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 20:04:12

we also have 3 5:1 gear kits and 3 7:1 kits

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-21 20:06:20

Example forklift mechanism for climbing with 2 partners. See additional photos below from a FIRST book coach has.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-21 20:06:25
bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-21 20:06:33
bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-21 20:06:39
bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-21 20:06:44
chrisrin (chrisrin@microsoft.com)
2018-01-21 20:17:49

@coachchee @jack_chapman it seems likely direction is to use 2 CIMs + one of the following:

  • one VP shared by the CIMs via adapters mentioned earlier in the channel
  • one VP for each CIM... could position each motor+VP on either side of the shaft with the winch spool (space allowing, of course) to avoid needing to do chain. Worst case we do have to do chain to combine the power of the two motors - just need to do the diligence to get it right.

Given inventory on hand Will stated, I think it'd be good to order 1 more 5:1 and one more 7:1 VP kit.

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:19:38

And then if Paul states we need higher gear ratio, then we'll have to look at options & use other kits in inventory or possibly order other kits

coachchee (echee@bisd303.org)
2018-01-21 20:24:05

@kaedricholt Please include above order with Rose's request from Vex and give me final list on Mon. to order. @whobbs1496 @rosebandrowski

riyadth (riyadth@gmail.com)
2018-01-21 20:26:46

I would be very concerned with a system that has each CIM coupled to a planetary gearbox, and the outputs of the two planetary gearboxes rigidly coupled to a shaft. If one of the motors were to fail (or just not get turned on by software correctly, or accidentally disconnected from power, etc.), I think the other motor and gearbox would shred the idle gearbox to bits.

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:29:31

@riyadth Would you prefer we do something like this + a separate 3:1 reduction using sprockets/chain? www.andymark.com/ToughBox-p/am-toughbox.htm

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:30:19

trouble with the 2-CIM-input gearboxes is the gear ratios aren't high enough for our application

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:31:06

they're designed for drivetrains - ideas definitely welcome - thanks for the input

riyadth (riyadth@gmail.com)
2018-01-21 20:31:23

Any high-reduction gearbox being driven backwards (ie, from the output side) will resist movement. The higher the reduction ratio, the worse it is. A CIM could easily spin an idle CIM coupled at 1:1...

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:33:40

another idea: make our own gearbox maybe (not the gears, but the box enabling COTS gears to be set up for the ratio we need)?

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:49:01

At this point, we've talked about so many design directions for the winch... Today, when it was realized the rope slack had been overestimated, there was relief because numbers indicated a simple single speed winch can be pursued rather than the more complicated options. We just need to lock down the design direction given that decision. I took physics and even statics & dynamics back in the day, but I don't have the intuition or experience of a seasoned engineer or mechanic. There is a fair chance I will miss something critical like the exploding gearbox risk Riyadth mentioned. So any and all input from experienced people is welcome.

@kaedric_holt @coachchee Given the risk Riyadth pointed out, I'm afraid we should adjust course and order two of these: www.andymark.com/ToughBox-p/am-toughbox.htm with the 14.88:1 gears (not sure steel or aluminum). Scratch the order for the additional Vex VP 5:1 and 7:1 kits. With that approach, we'll need a 2:1 to 3:1 reduction via sprockets/chain. Do we have inventory to accomplish that?

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:55:47

@andrew_peterson As far as CADing the winch, here are the pieces:

coachchee (echee@bisd303.org)
2018-01-21 20:56:44

@whobbs1496 @Kenneth Wiersema @rose_bandrowski We might need some chain and sprokets. Again, feel free to swing by at 1:45 pm to check inventory or check inventory sheet which may not have been shared with mentors.

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 20:57:46

I will not be able to come after school because I am making up a calc quiz

chrisrin (chrisrin@microsoft.com)
2018-01-21 20:58:05

@andrew_peterson Paul will definitely need to help with the winch drum, because we'll need a brake again, we'll need flanges incorporated, etc. So I would just do a rough in of that part of the overall design

whobbs1496 (whobbs1496@gmail.com)
2018-01-21 20:58:08

I will post a link to the inventory in the engineering Chanel

Kenneth Wiersema (kcw815@icloud.com)
2018-01-21 20:58:46

I think we’re fine on chain right now, not certain on what sprockets we have for what gear ratios. We could probably put together a 2:1 or a 3:1 ratio.

chrisrin (chrisrin@microsoft.com)
2018-01-21 21:05:44

@jack_chapman: @Ethan Rininger I did not look at how CIMs tie into that gearbox (key, pinion...). Would one of you please take a look to ensure compatibility with our inventory?

2018-01-21 21:33:04

@chrisrin commented on @billbandrowski’s file ForkLift5.jpg: @billbandrowski that is a great example of what we need to build - thank you for sharing! @jack_chapman @Ethan Rininger next meeting you should see if the CAD files might still be around to see how they put the two forks together, what hinges they used, how they did the release mechanism that let the forks fall outward, etc.

paul_vibrans (pvibrans@tscnet.com)
2018-01-21 23:27:38

Before you get carried away with ordering gears that appear to work out to a total reduction ratio of 37.7:1 please note that my calculations show a requirement for a gear ratio between 81:1 and 82:1 with two CIM's driving.

paul_vibrans (pvibrans@tscnet.com)
2018-01-21 23:29:06

The spreadsheet is not complete because I have not added the links to the motor performance and the battery drain.

chrisrin (chrisrin@microsoft.com)
2018-01-22 01:17:53

@paul_vibrans: Direction was we need to order today, so we did our best. All we decided in the end was to order a couple 2-CIM single speed gearboxes for the 2 robots, geared as high as they sell them. And we have an intention to include whatever additional gear reduction we need in the form of sprockets and chain. No sprockets ordered. If you have a superior solution, please share and drive it.

chrisrin (chrisrin@microsoft.com)
2018-01-22 01:31:36

I do want to remind you that we ended up lifting 1 robot with 1 CIM at 21:1 last year. 2 CIMs at 35:1 to lift 3 robots seems roughly proportional. 80+:1 seems very conservative and will not be fast enough IMO. What’s your time projection? 15 seconds? Do we need more motors? Different motors? Are we back to thinking 3-drum traction machine?

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-22 07:40:36

*Thread Reply:* If we attempt to lift 2 other robots we may need to go much slower to minimize sudden movements that could cause a slip/fall off of our lift. Does that mean we need a two speed system - single lift and partner lift, or just one slow system?

coachchee (echee@bisd303.org)
2018-01-22 07:50:52

@chrisrin can you summarize what you want me to order or @whobbs1496 thanks

chrisrin (chrisrin@microsoft.com)
2018-01-22 08:06:42

At this point, I need to defer to Paul as the experienced engineer & mechanic. Don’t order anything now.

chrisrin (chrisrin@microsoft.com)
2018-01-22 08:24:14

Correction: still order the rope @paul_vibrans

chrisrin (chrisrin@microsoft.com)
2018-01-22 08:59:51

@paul_vibrans: could we possibly use the two CIM + toughbox (http://www.andymark.com/ToughBox-p/am-toughbox.htm) at 5.95:1 + this beefy planetary at 12:1. Could the gearboxes be mated?

www.AndyMark.com
chrisrin (chrisrin@microsoft.com)
2018-01-22 09:00:35

The planetary: http://www.andymark.com/CIM-Sport-p/am-cimsport.htm

www.AndyMark.com
chrisrin (chrisrin@microsoft.com)
2018-01-22 09:38:39

Output of the toughbox is 1/2 inch shaft with 1/8” key and input to the CIM Sport is 1/2 inch shaft with pinion gear pressed on. Can a pinion gear be pressed onto a shaft like that with the key removed? Beyond that, could mounting holes be added to the output side plate on the toughbox in order to mount the CIM Sport. Or if you have a better way to get to (or close to) your target gear ratio, please share.

paul_vibrans (pvibrans@tscnet.com)
2018-01-22 12:02:54

Calculations indicate a single CIM motor wiith a CIM Sport 64:1 ratio planetary gear will lift three 100# robots in 4.33 seconds with 2.4 second reel-in time and 33.9A motor current. That is what we should use. When all the robots get to 150#, an unlikely situation, the hoist time goes to 5.5 seconds and the motor current goes to 49.5A, which may trip a circuit breaker.

chrisrin (chrisrin@microsoft.com)
2018-01-22 19:11:35

*Thread Reply:* Ran across this - I think the risk of tripping the breaker is quite low: http://www.team358.org/files/electrical/MX5%20Spec%20Sheet.pdf|www.team358.org/files/electrical/MX5%20Spec%20Sheet.pdf

paul_vibrans (pvibrans@tscnet.com)
2018-01-22 19:50:50

*Thread Reply:* I found the same thing. We are safe.

chrisrin (chrisrin@microsoft.com)
2018-01-22 12:18:09

Thanks @paulvibrans ! @coachchee @jackchapman @whobbs1496 please order three of these with 64:1 ratio: http://www.andymark.com/CIM-Sport-p/am-cimsport.htm

www.AndyMark.com
coachchee (echee@bisd303.org)
2018-01-22 14:09:23

*Thread Reply:* Ordered.

coachchee (echee@bisd303.org)
2018-01-22 14:16:20

*Thread Reply:* Why not use a versaplanetery gearbox instead of the AM Sport planetry gearbox ?

paul_vibrans (pvibrans@tscnet.com)
2018-01-22 14:25:48

*Thread Reply:* Hopefully bigger gear teeth and more strength

2018-01-22 13:56:26

@chrisrin commented on @bill_bandrowski’s file ForkLift1.jpg: picture of robot with gaps in bumpers on the sides for the side forklifts

2018-01-22 14:10:40

@Harper Nalley commented on @bill_bandrowski’s file ForkLift1.jpg: It would be very difficult to move where the bumpers are mounted.

chrisrin (chrisrin@microsoft.com)
2018-01-22 14:37:57

@paulvibrans: will you be able to help @andrewpeterson with the winch drum design, including grooves, brake, flanges? Thanks again for all your help

chrisrin (chrisrin@microsoft.com)
2018-01-23 07:24:02

Thinking about the climb with friends forklift wings (I vote we call them "the wings") and also about the fact that robots have to be able to clear the cable-protecting conduit bumps on the field that are 7/8 inch high... Should we target to make the height of the structure of the wings the same to ensure compatibility with robots? From section 3.3 of the rules: "A cable protector extends from the center of each side of the PLATFORM and is 2 ½ in. (~6 cm) wide and ¾ in. (~2 cm) high (Electriduct, Inc. CSX-3, black). The cable protector is attached to the field with hook fastener, increasing the height to approximately ⅞ in. (~2 cm). These cable protectors extend to the GUARDRAILS and the SWITCHES." Has any work been done yet on the actual structure of the wings?

chrisrin (chrisrin@microsoft.com)
2018-01-23 07:29:09

*Thread Reply:* This is where we may need to lean on Paul or Kirsten to help figure out what we need for the structure to be strong/rigid enough. For example, is something like this appropriate, too weak, or overkill? http://www.onlinemetals.com/merchant.cfm?pid=22327&step=4&showunits=inches&id=1634&top_cat=60

onlinemetals.com
binnur (binnur.alkazily@gmail.com)
2018-01-23 19:25:10

*Thread Reply:* suggest a different external product name than ‘wings’ as wings can break — something that can be PR’d as we may need to convince folks to trust we can carry and not break them

chrisrin (chrisrin@microsoft.com)
2018-01-23 08:43:25

Or thinking a bit more about it, it seems like a frame of 20x20x3mm might be better? Would be good to figure out frame material and general structure so wings can be CADed.

paul_vibrans (pvibrans@tscnet.com)
2018-01-23 09:27:35

There needs to be a decision on overall geometry before purchasing materials. If the forks lie flat on the floor, the hinge geometry is particularly tricky and the sound the forks make as they slap the floor may turn heads. I think we need to go back to ramps that lead from the floor to the top of the bumpers. The hinges can be located at the top of the chassis with ramp structure extending into slots in otherwise continuous bumpers. Cored composite ramp surfaces are highly desirable if we can get them. There are honeycomb panels available in the aerospace market if we can afford them.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-23 09:40:30

Regarding forks vs ramp - a few thoughts: When I look at auto maintenance lifts, they consist of two rails (versus a platform), seems simple and effective, minimum material and space requirements, does not impede the view as much, and keeps the robot wheels from rolling off the ramp. Striking the floor can be solved with padding.

👍 dana_batali
chrisrin (chrisrin@microsoft.com)
2018-01-23 10:28:38

I like the drive over rather than on nature of the fork/rails. Seems more forgiving / faster as far lining up and getting in place

chrisrin (chrisrin@microsoft.com)
2018-01-23 10:30:42

Could use bumpers to cushion the drop of the wings a bit

paul_vibrans (pvibrans@tscnet.com)
2018-01-23 12:04:14

Can you draw the hinge detail you have in mind?

whobbs1496 (whobbs1496@gmail.com)
2018-01-23 12:05:23

I can talk to Mr Michaels about carbon fiber /fiberglass honeycomb if we want to pursue that idea

paul_vibrans (pvibrans@tscnet.com)
2018-01-23 12:06:37

Probably best to do a flat panel to avoid having to build a mold.

whobbs1496 (whobbs1496@gmail.com)
2018-01-23 12:06:59

Agreed

paul_vibrans (pvibrans@tscnet.com)
2018-01-23 12:11:06

How thick is it? Half inch would be just right.

whobbs1496 (whobbs1496@gmail.com)
2018-01-23 12:11:41

It is half inch

chrisrin (chrisrin@microsoft.com)
2018-01-23 13:25:22

@paul_vibrans Here's what I had in mind. Might not need to be so reinforced.

paul_vibrans (pvibrans@tscnet.com)
2018-01-23 13:27:01

When it is folded within the frame perimeter where is it?

chrisrin (chrisrin@microsoft.com)
2018-01-23 13:28:34
paul_vibrans (pvibrans@tscnet.com)
2018-01-23 13:30:54

If it hinges where the arrow points it sweeps through all of the side space we need for mounting electronics and pneumatics.

chrisrin (chrisrin@microsoft.com)
2018-01-23 13:33:47

I didn't know locations of those were decided... I also thought a lot of that was going to go sub-deck. Could modify the concept to provide clearance.

chrisrin (chrisrin@microsoft.com)
2018-01-23 13:42:39
Terry (terry@t-shields.com)
2018-01-23 15:10:50

@chrisrin @paul_vibrans would love to go sub-deck for electronics (and have access via bottom belly pan) but I believe scissor lift needs the low sub deck space right down the centerline of the robot, forcing electrical to be vertical mount. By the end of next weekend it would be wonderful to define approx. space envelopes for our major systems just to see how big the pieces of our puzzle really are.

riyadth (riyadth@gmail.com)
2018-01-23 15:57:26

Remember that pneumatics will require a significant number of storage tanks (probably 4 to 6), which take a significant amount of space and cannot go below deck. Also, the volume occupied by the pneumatic tubing to all the actuators will be significant, and it will be routed all over the space. Always reserve some space around the edges of modules for routing of control tubing and cabling.

chrisrin (chrisrin@microsoft.com)
2018-01-23 16:25:42

Latest space saving version - not sure about the slide then hinge, but if it could be done then a lot of space could be made available for other things.

coachchee (echee@bisd303.org)
2018-01-26 09:12:03

How stable will our robot be if only one robot can sit on our ramp while we climb ? I am sure you guys have discussed this.

whobbs1496 (whobbs1496@gmail.com)
2018-01-26 09:57:52

My understanding is that this is why we want the stabilizing arms

andrew_peterson (peterand002@frogrock.org)
2018-01-26 12:18:26

I will not be able to make it to the meeting today

chris_mentzer (cmentzer@mentzer.org)
2018-01-26 12:30:59

@chris_mentzer has joined the channel

violet_advani (advanvio000@frogrock.org)
2018-01-26 18:05:27

(http://www.cargoequipmentcorp.com/Wire-Hook-p/1016.htm) heres a possible hook design

Cargo Equipment Corporation
violet_advani (advanvio000@frogrock.org)
2018-01-26 20:57:01
2018-01-26 21:25:47

@chrisrin commented on @violet_advani’s file List of general parts: Thank you Violet!

chrisrin (chrisrin@microsoft.com)
2018-01-26 23:28:18

Created these sketches, thinking about the need to roll up both the tower face and sides. I still wonder about glides or felt - with enough surface area, could work.

chrisrin (chrisrin@microsoft.com)
2018-01-27 12:29:41

@jackchapman @Ethan Rininger @violetadvani @SeanWilliams @andrewpeterson @bill_bandrowski @4915plane If you have a chance, please take a look at the arm sketches and potential items to order above. If anyone has strong opinions about which design directions or which components look best, please comment. Re: the arm, definitely would like to see other design ideas. Re: the rope-holding clips, we may need to order a few and see what works best for our unique application.

4915plane (4planejim@gmail.com)
2018-01-27 12:30:11

@4915plane has joined the channel

coachchee (echee@bisd303.org)
2018-01-27 12:51:30

What about the hook ?

chrisrin (chrisrin@microsoft.com)
2018-01-27 12:57:48

Violet shared one yesterday that might work, and yes I agree it would be good to see some options to evaluate. Go climbing team!

chrisrin (chrisrin@microsoft.com)
2018-01-27 17:31:29

I updated the wish list to include several hooks. Also, as part of our winch spool design, do we need some things like these to connect hex shaft and a flanges to the PVC drum? I could see us needing up to four things like this per robot, depending on design. It is possible the flange itself could be designed to cover this base as well as act as a flange, but that could also take more time (which is passing quickly). With these things, we could probably make our own flange readily. https://www.andymark.com/Hub-p/am-0096a.htm

www.AndyMark.com
chrisrin (chrisrin@microsoft.com)
2018-01-27 17:39:52

One last thought on the design. It seems to me the placement of the winch drums (including being strongly anchored to the chassis) and 1/2 inch hex shaft is most critical. There are a variety of places and ways we could install the motors + gearboxes + chain to drive the shaft. I recommend we set a goal of getting the winch drums and shaft fully designed and placed on the robot CAD next meeting. @jack_chapman @Ethan Rininger

chrisrin (chrisrin@microsoft.com)
2018-01-27 17:57:01

Fun with knots 2018 edition... Excellent article on what knots to use with spectra/dyneema types of high-strength rope: http://allaboutknots.blogspot.com/2006/01/selecting-strong-hitch-for.html

coachchee (echee@bisd303.org)
2018-01-27 21:59:31

We have these hex hubs .

} Chris Rininger (https://spartronics.slack.com/team/U2D6YT7E2)
Kenneth Wiersema (kcw815@icloud.com)
2018-01-28 10:32:42

Here's the current location of the climber, and I think it's a bit further back on the robot than what is desirable, but it conflicts with the flipper motor otherwise (the colorful things on the model). The mounting setup is currently temporary, as I think that it needs to be reinforced more than what is currently done.

2018-01-28 10:38:10

@chrisrin commented on @Kenneth Wiersema’s file Climber image.png: I'm sure it is just the way you have the view configured, but it sort of looks like both winch drums are on the same side of the lift... Could we also get a view looking down from the front to get a better sense for lateral spacing of things?

Kenneth Wiersema (kcw815@icloud.com)
2018-01-28 10:46:31

Let’s wait till the meeting for the images, as there are drums on both sides of the scissor lift as the assembly stretches across the entire chassis

jack_chapman (jwc10101@gmail.com)
2018-01-28 13:23:48

https://photos.app.goo.gl/xVZtLUSYu979WcL02

Google Photos
jack_chapman (jwc10101@gmail.com)
2018-01-28 13:24:01

Possible specta knots

violet_advani (advanvio000@frogrock.org)
2018-01-28 13:52:37

http://www.andymark.com/500ex-1-2-inch-hex-hub-p/am-2568.htm

www.AndyMark.com
violet_advani (advanvio000@frogrock.org)
2018-01-28 13:52:50

for cad

violet_advani (advanvio000@frogrock.org)
2018-01-28 13:58:15

https://www.vexrobotics.com/217-4008.html Could we get another one of these?

VEX Robotics
USD
$19.99
WEBSITE
<a href="http://vexrobotics.com">vexrobotics.com</a>
violet_advani (advanvio000@frogrock.org)
2018-01-28 13:59:54

http://www.andymark.com/product-p/am-2375.htm

www.AndyMark.com
Ethan Rininger (rinineth000@frogrock.org)
2018-01-28 14:34:00

https://tulsachain.com/lifting-hooks good website for hooks

tulsachain.com
violet_advani (advanvio000@frogrock.org)
2018-01-28 14:37:46

*Thread Reply:* I think the Alloy steel flat hook style B looks promising

Ethan Rininger (rinineth000@frogrock.org)
2018-01-28 14:50:25

*Thread Reply:* it is very heavy and way beyond what we need

violet_advani (advanvio000@frogrock.org)
2018-01-28 14:34:13

http://www.andymark.com/Hub-p/am-0096a.htm

www.AndyMark.com
violet_advani (advanvio000@frogrock.org)
2018-01-28 15:04:49

https://www.vexrobotics.com/versahubs.html Part number 217-2592

VEX Robotics
USD
$2.99
WEBSITE
<a href="http://vexrobotics.com">vexrobotics.com</a>
chrisrin (chrisrin@microsoft.com)
2018-01-28 20:31:16

*Thread Reply:* if the 1/2 inch hex hubs are as strong as the andymark ones, they're definitely a better deal

chrisrin (chrisrin@microsoft.com)
2018-01-28 20:31:23

*Thread Reply:* thanks for looking those up

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-28 20:24:34

Some hook ideas

2018-01-28 20:30:18

@chrisrin commented on @bill_bandrowski’s file Hooks.pdf: Great stuff Bill, thanks for the sketched ideas

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-28 20:31:45

The PDF show some hook ideas. 1) The top is an idea for bolting on a piece of 3-4 inch of channel for a "hook" - either one large piece or 2 small pieces; 2) The middle idea is the custom hook cut from a piece of plate - it can be designed so the bar below will slide easily into the hook when the scissor lift is lowered; 3) the bottom is the idea using the turnbuckle hook.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-28 20:38:02

I think the custom plate idea may make the most sense if we can mount it directly to the side of the intake arms and the rope clears everything. As noted, we can design it so as the scissor lift is lowered, the bar smoothly slides up the arm and into the hook.

coachchee (echee@bisd303.org)
2018-01-28 20:40:55

the above hook is 500 pound tested

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-28 20:44:17

That is an interesting hook!

chrisrin (chrisrin@microsoft.com)
2018-01-28 20:45:42

I like it. Let's get one as an option. It's almost the same shape as I sketched onto aluminum (other than the spring snap clip close) to potentially cut out.

chrisrin (chrisrin@microsoft.com)
2018-01-28 20:46:21

I looked at Amazon for hours - how'd you find that dang thing? Good find!

Kenneth Wiersema (kcw815@icloud.com)
2018-01-28 20:46:45

Weight wise it’s about a pound, but

Kenneth Wiersema (kcw815@icloud.com)
2018-01-28 20:47:01

I bet that one that we make could be lighter

coachchee (echee@bisd303.org)
2018-01-28 20:47:37

I have used something like this for climbing. 1KN is 225 pounds. so it is 5000 static pound tested

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 20:47:55

I think a plate hook would be the way to go

chrisrin (chrisrin@microsoft.com)
2018-01-28 20:48:09

how about we steal the shape & cut a couple of them out

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 20:48:21

While I like the hook Chee found it seems a little heavy and hard to mount

coachchee (echee@bisd303.org)
2018-01-28 20:49:47

I liked ghe snap lock to prevent our robot from coming off the bar but may also be an issue grabbing

coachchee (echee@bisd303.org)
2018-01-28 20:50:33

here is another one :https://www.amazon.com/MonkeyJack-Aluminum-Climbing-Rappelling-Equipment/dp/B071NSFCLY/ref=pd_sbs_468_7?_encoding=UTF8&pd_rd_i=B071NSFCLY&pd_rd_r=6CVVNRTX3F3T1RND0C1Q&pd_rd_w=aP5Kt&pd_rd_wg=U4NYN&refRID=6CVVNRTX3F3T1RND0C1Q

amazon.com
jack_chapman (jwc10101@gmail.com)
2018-01-28 20:52:09

It looks like the snap bit is easily removable if it becomes a issue, attaching the rope also looks fairly easy

chrisrin (chrisrin@microsoft.com)
2018-01-28 20:52:31

Will, re: plate hook, what's that look like roughly?

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 20:57:21

This is what I was thinking

jack_chapman (jwc10101@gmail.com)
2018-01-28 20:57:45

On the second hook, it looks like you could drill through it and bolt small angle stock onto it, and bolt the stock onto the grabber arm

jack_chapman (jwc10101@gmail.com)
2018-01-28 21:00:15

Wills hook is Definitely easier to mount to scissor lift, cable attachment on Chee's hooks seems easier

coachchee (echee@bisd303.org)
2018-01-28 21:00:46

I will order both types that I just showed.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-01-28 21:01:02

The plate hook should be able to mount directly on the side of the intake arm (each side)

chrisrin (chrisrin@microsoft.com)
2018-01-28 21:01:09

@will I like. @coachchee here's another option as well https://www.amazon.com/Climbing-Scaffolder-Automatic-Protection-Standard/dp/B00ZVYXBNS/ref=pd_sbs_200_2?_encoding=UTF8&pd_rd_i=B00ZVYXBNS&pd_rd_r=V2W5WZ0NTB585SBNCM56&pd_rd_w=cH4j5&pd_rd_wg=4kEQd&psc=1&refRID=V2W5WZ0NTB585SBNCM56

amazon.com
whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:01:16

I agree with bill

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:01:43

we can also add a hole in the plate to attach the rope

chrisrin (chrisrin@microsoft.com)
2018-01-28 21:01:55

I think top choice is cut the hook out for easy mount as Bill & Will agreed

chrisrin (chrisrin@microsoft.com)
2018-01-28 21:02:29

probably lighter as well - with two of them (one on either side), how thick does the material need to be?

jack_chapman (jwc10101@gmail.com)
2018-01-28 21:05:32

I think the thickest plate we have and could use for this is 1/4 inch, we'd also probably want both to be able to hold at least 500lbs in case one cable gets ahead of the other

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:06:10

I would say 1/4" to be safe

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:06:27

But we could also do 4 1/8" hooks

coachchee (echee@bisd303.org)
2018-01-28 21:09:34

Can we use the x-carve to cut for hooks ?

Kenneth Wiersema (kcw815@icloud.com)
2018-01-28 21:10:33

Maybe? It will take a long time to cut them, and Will or I will need to watch it constantly

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:10:44

I think we could but it would probably be faster and easier on the bandsaw

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:11:17

With the 1/4" bit we ordered we could probaly cut a lot faster

chrisrin (chrisrin@microsoft.com)
2018-01-28 21:12:11

one thing about the locking hooks: if climb started tipping sideways it would only tip so far

coachchee (echee@bisd303.org)
2018-01-28 21:13:03

@whobbs1496 You need to show me the 1/4 bit that we ordered. I don't remember anymore.

chrisrin (chrisrin@microsoft.com)
2018-01-28 21:13:24

with two locking hook spaced fairly widely, the hooks themselves could keep things level & might not need the stabilizing arms

chrisrin (chrisrin@microsoft.com)
2018-01-28 21:13:48

just a thought

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:15:05

I think this is true with the plate hooks as well

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:16:09
whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:16:16

This is the bit we ordered

coachchee (echee@bisd303.org)
2018-01-28 21:17:02

@whobbs1496 Thanks.

coachchee (echee@bisd303.org)
2018-01-28 21:18:19

Don't we have this bit already ? I thought the freebie I ordered was a 2nd one ? @whobbs1496

whobbs1496 (whobbs1496@gmail.com)
2018-01-28 21:19:41

We do not. We have a two flute bit which is not ideal for aluminum cutting

paul_vibrans (pvibrans@tscnet.com)
2018-01-28 21:50:30

Two hooks will not keep the robot level if we climb with only one other robot. The guide rollers are required.

chrisrin (chrisrin@microsoft.com)
2018-01-28 21:52:18

*Thread Reply:* Yep, we're still planning on them. My point was top+bottom rung shaft contact is superior to just top, stability wise.

paul_vibrans (pvibrans@tscnet.com)
2018-01-28 22:00:27

*Thread Reply:* The hooks shown on slack will not engage to provide down force with the center of gravity positions of just two robots and the expected side to side spacing. A tighter fit on the rung is required.

paul_vibrans (pvibrans@tscnet.com)
2018-01-28 22:23:39

I did a torsional stress calculation on a winch with 2.5 inch diameter drums and the shaft needs to be 0.625 inch solid drill rod or 0.75 x 0.095 wall 4130 tube of which the tube weighs less. If the tube is used, the drums can be cantilevered off single bearings, which make the installation easier. The drums do not need to be wider than 1.5 inches between flanges to handle all of the rope for a lift. Wider drums will just waste time to make and add weight. If half inch hex rod is used to drive the drums and all of the load is placed on one drum, even if it has support from bearings on both sides, it will get a permanent twist after lifting three robots with a total weight of over 300 pounds.

paul_vibrans (pvibrans@tscnet.com)
2018-01-28 22:27:09

Loctite 638 will lock hubs longer than 0.5 inches on a 0.75 inch shaft with sufficient capacity to lift three 150 pound robots with a safety factor of 2. No keys or hex shafts are required.

chrisrin (chrisrin@microsoft.com)
2018-01-28 22:50:31

Thanks @paul_vibrans. Please share the best way to interface with the .75 shaft you recommended, including chain drive, sprockets, and the thankfully narrower drums (custom hubs and loctite on the latter is what I glean, but what about the others?).

chrisrin (chrisrin@microsoft.com)
2018-01-28 23:04:53

I ask because the 1/2 inch hex shaft & surrounding solution was within the grasp of our climber team (everyone understood the pieces & how they fit together), but a more custom solution using the .75" tube may be a bit beyond us (speaking of my myself at least). I respect & appreciate your analysis conclusing that the 1/2-inch will fail with the "climb with friends load" - reality is we're going to need help to attempt the superior alternative.

chrisrin (chrisrin@microsoft.com)
2018-01-28 23:18:30

@paul_vibrans Will we need something like this (or that "looks" like this)? Two of something like this, one on either side of each drum, bolted through the PVC and loctited to the .75 tube? https://www.pipefittingsdirect.com/075-inch-slip-on-plate-flange-316-stainless-steel

Pipe Fittings Direct
chrisrin (chrisrin@microsoft.com)
2018-01-29 07:21:32
chrisrin (chrisrin@microsoft.com)
2018-01-29 07:30:05

*Thread Reply:* @jack_chapman @whobbs1496 Do either of you know what series (25 or 35) our 1/2-inch hex driven sprockets are?

chrisrin (chrisrin@microsoft.com)
2018-01-29 07:37:03

*Thread Reply:* Assuming we may need to go with 35 to deal with the .75" shaft, it looks like WCP has 1/2-inch hex bore sprockets if ours are 25: www.wcproducts.net/35-sprockets/

whobbs1496 (whobbs1496@gmail.com)
2018-01-29 07:54:42

*Thread Reply:* @chrisrin I do not remember off the top of my head but I can check today

chrisrin (chrisrin@microsoft.com)
2018-01-28 23:20:09

And for the sprocket/chain interface, maybe something like this? https://www.amazon.com/35B20H-3-Tooth-Sprocket-Roller-Chain/dp/B01FV5R6MI/ref=sr_1_6?s=industrial&ie=UTF8&qid=1517210349&sr=1-6&refinements=p_bore_diameter_derived-vebin%3A0.75+inches

amazon.com
chrisrin (chrisrin@microsoft.com)
2018-01-28 23:22:11

Is there a local source for parts or are we going to need to order? If the the latter, then we need to figure out what to order before next meeting and then get the orders placed.

chrisrin (chrisrin@microsoft.com)
2018-01-29 00:33:21

Could we possibly change to carbon steel 1/2 inch hex in order to reduce change to overall design, need to identify/source parts, etc? https://m.grainger.com/mobile/product/GRAINGER-APPROVED-Hex-Stock-4YNF7?breadcrumbCatId=17059

m.grainger.com
chrisrin (chrisrin@microsoft.com)
2018-01-29 07:07:03

@channel Please read the last several posts starting with Paul's post that the 1/2 hex shaft will fail under the load of 3 robots from 10:23pm last night. After sleeping on this, I believe we are at decision time. I see three options, assuming the carbon steel stab in the dark above will not work: 1a) Stay the course with the 1/2-inch hex and abandon the aspiration to climb with friends 1b) Stay the course with the 1/2-inch hex as a hedge against the risk that finalizing an updated design, sourcing the parts for it, and constucting it will take too long for incorporation into the robot (including appropriate testing) for the first competition. 2) Abandond the 1/2-inch hex design and proceed at maximum speed to complete the new design, source parts, build it, and test it.

@paul_vibrans If we're doing anything but 1a, I need to insist you officially join the climber team part time (which means there's an opportunity cost because we'll be taking your time away from other teams). We can't afford another miss like the torsional stress failure inevitability, and we need your experience to effectively and efficiently get a new design done. Without you, we'll come up with another design, it is likely to be fatally flawed in some other unanticipated way, iterate, etc.

jack_chapman (jwc10101@gmail.com)
2018-01-29 08:28:31

@paul_vibrans does the stress issue also apply to the gearbox outputs, or is it just the winch that we would need to change?

jack_chapman (jwc10101@gmail.com)
2018-01-29 09:33:33

I'd personally believe that we should climb by competition 1, so I'm not the fondest of option 1b

jack_chapman (jwc10101@gmail.com)
2018-01-29 09:37:15

By the looks of it, we won't have climbing with friends done by bag day, and changing the shaft would push us a little further back, so the big question is just abandon climbing with freinds or do we change it all

jack_chapman (jwc10101@gmail.com)
2018-01-29 09:41:08

I'm going to reserch parts for the different shaft tonight and order stuff for the other shaft soon unless we come to a conclusion before I order

paul_vibrans (pvibrans@tscnet.com)
2018-01-29 10:03:03

As arranged nose to nose with the coupler the gear shafts are OK. Separate sprockets and chains for each gear are better.

chrisrin (chrisrin@microsoft.com)
2018-01-29 12:12:15

Potential gap in our general design: How are we guiding rope onto the winch drum? Need a fairlead of some kind?

jack_chapman (jwc10101@gmail.com)
2018-01-29 14:03:30

@paul_vibrans your calculations we're taking into effect a steel hex shaft, right?

paul_vibrans (pvibrans@tscnet.com)
2018-01-29 14:06:37

We do not need a fair lead if we can give a clear path from the hook directly to its drum after it pulls free from the clips on the scissor.

paul_vibrans (pvibrans@tscnet.com)
2018-01-29 14:10:41

I looked at steel hex and it needs to be bigger than 1/2" if all of the lifting takes place with one drum. No amount of hope or wishing will make it otherwise.

jack_chapman (jwc10101@gmail.com)
2018-01-29 14:44:02

@jack_chapman pinned a message to this channel.

} Paul Vibrans (https://spartronics.slack.com/team/U2CVBNG7R)
jack_chapman (jwc10101@gmail.com)
2018-01-29 14:45:17

@jack_chapman pinned a message to this channel.

} Chris Rininger (https://spartronics.slack.com/team/U2D6YT7E2)
Kenneth Wiersema (kcw815@icloud.com)
2018-01-29 20:13:42

For those wanting to cnc the hook. I quickly plugged the hook into Easel (the cnc interface program) and it came out with 7.5 hours to cut 1 hook. While someone could do it under 30 minutes on the vertical band-saw.

coachchee (echee@bisd303.org)
2018-01-29 20:26:45

Thanks for figuring that one out !!

Kenneth Wiersema (kcw815@icloud.com)
2018-01-29 21:55:32

I like it, and it isn't that much of a modification to the current design. I am just curious on where we would get the bearings for the drum shaft?, as most of our regular suppliers don't carry bearings that have bore diameters greater than .5. Would the mounts to the drums need to be custom made?, or what Chris found would work too?, because I don't just see the shaft as a strength issue either, as the Drums might not be strong enough either.

chrisrin (chrisrin@microsoft.com)
2018-01-29 22:32:15

Thanks Paul. To Kenneth's point we need to get to specific bill of materials & then order parts.

Kenneth Wiersema (kcw815@icloud.com)
2018-01-30 07:18:17

Correction to my earlier comment about our regular vendors not selling large bearings, I found a .75 inner diameter bearing on vex pro, so sourcing the sprocket might be the only problem. According to Jack we have #35 chain, so a 15 or greater toothed sprocket would be ideal.

chrisrin (chrisrin@microsoft.com)
2018-01-30 08:18:07

Another quick sketch - hinging forks - not sure about viability given everything else on the robot. Should we consider a single ramp off the back instead (i.e. climb with friend rather than friends)? Seems like there might be more space back there.

paul_vibrans (pvibrans@tscnet.com)
2018-01-30 08:39:13

It is not possible to validate the concept sketches without making a first attempt at a design with details like real bearings and housings, real structural members for which stresses can be computed and the like. Can you do that?

jack_chapman (jwc10101@gmail.com)
2018-01-30 08:41:05

Wouldn't a extra 150 lbs off the back of the robot stress the scissor lift more?

paul_vibrans (pvibrans@tscnet.com)
2018-01-30 08:56:36

Check the platform geometry to see if the length of our robot plus the length of the ramp leaves room for the friend to drive on.

chrisrin (chrisrin@microsoft.com)
2018-01-30 09:03:36

Can take a shot at a more robust sketch tonight. @jack_chapman I mentioned the back because I’m concerned about having enough space on the sides (& weight to spend generally) for two robust fold down bearing structures. It could turn out to be not viable, but a single fold down bearing structure off the back could be viable in that case.

paul_vibrans (pvibrans@tscnet.com)
2018-01-30 09:28:55

The parts that need to be ordered for the climber winch are:

paul_vibrans (pvibrans@tscnet.com)
2018-01-30 09:35:43

4 each Drawn Cup Needle Roller Bearing, 0.75 ID x 1.00 OD x 0.5 W, J-128 Koyo, $4.61 per unit 4 each Needle Thrust Bearing, 0.75 ID x 1.25 OD x 0.0781 W, NTA-1220 Koyo, $1.94 per unit

paul_vibrans (pvibrans@tscnet.com)
2018-01-30 09:39:20

8 each Thrust Washer, 0.75 ID x 1.25 OD x 0.031 W, TRA-1220 Koyo, $0.71 per unit All from John Bearing & Supply, Inc.

3 feet Cold Rolled 4130 Alloy Steel Tube, 0.75 OD x 0.095 Wall, $29.57

paul_vibrans (pvibrans@tscnet.com)
2018-01-30 09:39:35

From Online Metals

paul_vibrans (pvibrans@tscnet.com)
2018-01-30 09:42:03

4 each Steel Sprocket 35B15 reborable or 3/4" finished bore, #35 chain x 15 teeth From any source on the internet.

All of the other parts we need are in stock at BHS

coachchee (echee@bisd303.org)
2018-01-30 10:22:03

@jack_chapman @Ethan Rininger Send me the links to buy stuff above.

coachchee (echee@bisd303.org)
2018-01-30 10:31:04

I just need a link for the sprockets. Bearings and washer have been ordered.

coachchee (echee@bisd303.org)
2018-01-30 11:48:52

the sprockets are backordered from amazon above. Let me know if you find a vendor that can deliever sooner.

coachchee (echee@bisd303.org)
2018-01-30 11:52:37

Nevermind found a vendor with them in stock

Kenneth Wiersema (kcw815@icloud.com)
2018-01-30 11:58:22

I thought we needed a 0.75 bore, the one that was purchased had a .5 in bore.

Kenneth Wiersema (kcw815@icloud.com)
2018-01-30 12:03:37

Here’s one that I found that has a 0.75 bore, .375 pitch, downside it has 16 teeth

coachchee (echee@bisd303.org)
2018-01-30 12:44:19

we can bore it out

coachchee (echee@bisd303.org)
2018-01-30 12:45:02
paul_vibrans (pvibrans@tscnet.com)
2018-01-30 12:57:25

Boring out sprockets is normal practice. When mounting with Loctite 638, the keyway is redundant.

chrisrin (chrisrin@microsoft.com)
2018-01-31 07:18:42

added stabilizer arms that roll up the tower to the previous sketch, and now I'm going to remove the succession of sketches from the past day other than this one

2018-01-31 07:23:21

@chrisrin commented on @chrisrin’s file climb with friends v8.png: Of course, if stabilizer arms are coming at the tower from the chassis corners like this, we would need to adjust the angles of the arm end faces & wheels. Could also just have dedicated arms coming out straight - easier/more modular to build but heavier & less space efficient

chrisrin (chrisrin@microsoft.com)
2018-01-31 16:31:25

Thinking about this more, the cables to the sides likely won’t work due to bumpers

chrisrin (chrisrin@microsoft.com)
2018-01-31 16:33:58

I have a possible fix - will look at it later

chrisrin (chrisrin@microsoft.com)
2018-01-31 18:23:17

rough, but gets point across - use hinges to go wider to accommodate robot width including bumpers

chrisrin (chrisrin@microsoft.com)
2018-02-01 07:04:31

I found this summary of how to approach beam load calculations (including cantilevers) that seems fairly well done, though there are ads to skip past. http://www.brighthubengineering.com/building-construction-design/109683-beam-load-calculations-explained/

Brighthub Engineering
Kirsten_M (kirsten.martel@gmail.com)
2018-02-01 16:48:46

Here's some websites I like:

Kirsten_M (kirsten.martel@gmail.com)
2018-02-01 16:48:48

https://www.engineersedge.com/beam_bending/beam_bending9.htm

engineersedge.com
Kirsten_M (kirsten.martel@gmail.com)
2018-02-01 16:48:55

https://www.engineersedge.com/beam_bending/beam_bending10.htm

engineersedge.com
Kirsten_M (kirsten.martel@gmail.com)
2018-02-01 16:49:01

https://mechanicalc.com/reference/beam-analysis

mechanicalc.com
jack_chapman (jwc10101@gmail.com)
2018-02-01 16:50:22

How does this sound for a wrench?https://m.grainger.com/mobile/product/PROTO-1-2-22DJ01

m.grainger.com
Kirsten_M (kirsten.martel@gmail.com)
2018-02-01 16:59:11

Section properties of various aluminum square and rectangular tube sizes.

Kirsten_M (kirsten.martel@gmail.com)
2018-02-01 17:00:12

My calculation for platform tube sizing. This includes a factor of safety of 3. Also calculated is the deflection of various tube sizes.

2018-02-01 17:13:49

@KirstenM commented on @KirstenM’s file CwF Tube Sizing.pdf: CwF = Climb with Friends

2018-02-01 17:18:25

@billbandrowski commented on @KirstenM’s file CwF Tube Sizing.pdf: Thanks Kirsten

chrisrin (chrisrin@microsoft.com)
2018-02-01 17:34:24

Thanks! Since we need the drive-over height to be 1” or less (1.5” is too high probably), would you recommend the 1x2?

Kirsten_M (kirsten.martel@gmail.com)
2018-02-01 17:36:49

The 1x2 is actually the strongest of the 3 I listed. It would be my choice. In addition, it has the smallest deflection.

chrisrin (chrisrin@microsoft.com)
2018-02-01 17:48:49

Thanks again!

bill_bandrowski (bill.bandrowski@gmail.com)
2018-02-01 22:10:29

@Kirsten_M Kirsten, thanks again for your calculations on the tube sizing. If we are going to build the fork lift mechanism, we would really need a design of the bracket and hinge. If it could be designed to use common materials readily available that would certainly help (a concern is that due to complexity, the bracket may need to be fabricated by a 3rd party).

chrisrin (chrisrin@microsoft.com)
2018-02-02 18:47:22

@jack_chapman @Ethan Rininger I was thinking... With other mechanisms being behind schedule, it seems like it may be a while before we get time with the robot. I wonder if we should create a wooden stand-in for the robot to mount the climbing winch onto and use it to test test in the meantime. It would be a chassis sized (~28x33 - we can get the exact measurements) plywood platform blocked up to be the same height as the top of the chassis. And we could also use it to prototype climb with friends components as well. Even once we do get time with the robot, it won't be much because of all the other teams (driving, programming, etc.) that need time, so having the stand-in could help us. If it seems like a decent idea, then a couple of us could build it while the climbing winch pieces are being finished up tomorrow.

Also, any word on the wheels for the stabilizer arms? I recommend we order the following to initially try: One unit of this: https://www.amazon.com/dp/B06VWBN661/_encoding=UTF8?coliid=I3NWTJW7FLFYK1&colid=QRAUIR30SRDH&psc=1 Four units of this, in case the above is not strong enough: https://www.amazon.com/dp/B00PZXI1QW/_encoding=UTF8?coliid=I3JE5ABQ5W9W38&colid=QRAUIR30SRDH&psc=0

Also, I still like the idea of trying a glide - so much simpler and less risk of breaking it off when lining up. Let's order this to try: https://www.amazon.com/Shepherd-Hardware-9240-Adhesive-Furniture/dp/B000KKVOX2/ref=pd_sim_60_4?_encoding=UTF8&pd_rd_i=B000KKVOX2&pd_rd_r=MB34J8FBNK6EDRY2JSX4&pd_rd_w=LWRPn&pd_rd_wg=6ZSPu&psc=1&refRID=MB34J8FBNK6EDRY2JSX4

jack_chapman (jwc10101@gmail.com)
2018-02-02 22:14:15

*Thread Reply:* Reading the review area on the first wheels, it seems like they aren't that strong

coachchee (echee@bisd303.org)
2018-02-03 08:49:35

*Thread Reply:* all ordered

Kirsten_M (kirsten.martel@gmail.com)
2018-02-02 18:53:38

@bill_bandrowski we can probably make a triangular one out of aluminum plate. From the hinge to the chassis side could be tube, then vertical tube to the lower platform. A triangular plate aligned with the vertical tube and the bottom platform/tube edge should work. I’ll sketch something up. Open to additional ideas or design considerations I might be unintentionally ignoring!

paul_vibrans (pvibrans@tscnet.com)
2018-02-02 20:03:55

If we only get one winch built before bag day it must go on the robot. The second winch gets used for testing either on a chassis or a mockup.

chrisrin (chrisrin@microsoft.com)
2018-02-02 21:31:08

Agree

chrisrin (chrisrin@microsoft.com)
2018-02-02 21:34:24

Latest thoughts on climb with friends platforms based on Kirsten's work, Bill's ideas, Paul's input that we should consider simplifying bearing via ropes/posts, etc.

jack_chapman (jwc10101@gmail.com)
2018-02-02 22:20:50

@paul_vibrans for the design you said that we would need a steel drill rod. Is this something we would have to order?

chrisrin (chrisrin@microsoft.com)
2018-02-03 09:54:58

@jack_chapman: to Paul’s point, if we can confidently make parts for the second winch (e.g. the drums & flanges), we should. We are going to want practice/tuning time & we are going to be last in line on the main robot. Not sure about the steel drill rod... I think that may have been the different heavier shaft option we did not choose

chrisrin (chrisrin@microsoft.com)
2018-02-03 10:21:03

Here's a tote lifter that has a reinforced corner that we might consider as we design climb with friends

Kirsten_M (kirsten.martel@gmail.com)
2018-02-03 10:30:30

Yes! That’s a similar idea to what I was trying to convey with words. Just proves how worthwhile a picture is.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-02-03 11:29:23

Thanks for you help Kirsten - looking forward to working with you today if you are available. Chris - I think you are right, we may need to build a mockup of the robot to test components.

4915plane (4planejim@gmail.com)
2018-02-03 11:35:18

A mock-up will be helpful. Did the winch drums get turned and finished at the last session? Thanks Paul for drawings. See you all soon!

Ethan Rininger (rinineth000@frogrock.org)
2018-02-03 16:20:33
coachchee (echee@bisd303.org)
2018-02-04 11:30:31

FYI. Sprokets are in. They came in on Fri. 2/2. Someone was asking for them. I gave them to the climbing team.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-02-04 11:55:38

Chris, thanks for posting the drawing showing the issue.

chrisrin (chrisrin@microsoft.com)
2018-02-04 11:56:25

@billbandrowski: @Ethan Rininger @KirstenM picture of our tight spot for mounting the climb with friends forks. One thought: make the fork very slightly a ramp (to allow us to anchor closer to the chassis edge).

chrisrin (chrisrin@microsoft.com)
2018-02-04 12:03:39

Another thought: use something thinner for just “the Z”... 3/8” steel? It would also allow mounting a bit closer to the chassis edge.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-02-04 12:09:46

Yes, steel plate might work as it may hinge in between wheel and winch

chrisrin (chrisrin@microsoft.com)
2018-02-04 12:44:39

I'm not giving up on Climb with Friends because of how valuable it would be, but I think the time is right to discuss contingency planning. Let's start a tread here... If we have Climb with Friends & it works, our chances of being a picking team are excellent due to the Face the Boss RP + the point advantage of having 3 climbs each match contributing to victories and thus more RPs. If we do not have Climb with Friends, then we won't get all those extra RPs & we won't win as many matches. At this point it is very difficult to say what our chances are to be in the top 10 to 14 robots who will get to select alliances. Chances are pretty good we won't be a picking team if numerous other teams have figured out Climb with Friends (or just Climb with Friend + levitate), because those teams will be getting the extra RPs.

So we need to plan for the scenario of not being a picking team. From an end game / climbing perspective, what can we offer? It seems clear that we will ideally be able to be a robot that can interface with other robots' Climb with Friends solutions. Let's think about that... 1) If a robot offers a climbing bar the same height as the one on the field, will we be able to use it to climb? Would we need to do anything beyond current plans to enable that? 2) If a robot offers a climbing bar that is significantly lower than the one on the field, what about that? 3) If a robot offers a ramp, can we climb it? How steep a ramp can we climb? If you read about that year with the ramps (Rack-n-Roll in 2007 I think), THIS became a big deal. The team members staffing the pits had that information to share with pit scouters ("Our robot can climb ramps up to 25 degrees without tipping.") We may need to test how steep a ramp our robot can climb so we can be ready for this this year.

chrisrin (chrisrin@microsoft.com)
2018-02-04 20:42:24

I put a poll out there on Chief Delphi asking what teams' plans are for climbing / end game. Here's a link: https://www.chiefdelphi.com/forums/showthread.php?threadid=162307

Results summary after 60 responses: 1.7% are not sure they'll even be able to drive up onto the platform and park 20% will be able to park or use a ramp/platform offered by another robot 13.3% plan to simply be able to climb the rung 21.7% plan to be able to climb the box aluminum alongside a robot that climbs the rung 8.3% plan not to climb but to instead assist both of their alliance partners 25% plan to climb and help one other robot climb via ramp, platform, or faux rung 10% plan to climb and help both alliance partners climb via ramps, platforms, or faux rungs (5% of them are planning platforms/ramps like we've been talking about doing... which is easier for other bots to interface with than faux rungs IMO)

There is going to be some craziness during the end game with all that variety!

👍 declan_freemangleason, Kirsten_M
:spartronics: Terry
bill_bandrowski (bill.bandrowski@gmail.com)
2018-02-06 17:36:01

*Thread Reply:* Chris - thanks for setting up the survey. It is very interesting and useful. Yes, may be a bit crazy out there at the end of the match.

chrisrin (chrisrin@microsoft.com)
2018-02-04 22:28:45

Updated to include actuator/release... This is a past design that may work better given space problem - space under the drum could potentially be used or not even needed. The question is still, could something like this be designed that would be strong enough?

violet_advani (advanvio000@frogrock.org)
2018-02-05 08:21:57

Hey, is there a need for me to stay today to get some work done on the drums?

paul_vibrans (pvibrans@tscnet.com)
2018-02-05 09:37:02

The bore of the drum flange should be 0.752".

jack_chapman (jwc10101@gmail.com)
2018-02-05 12:32:50

No, I believe that Cruz will be working on scissor lift parts on the lathe most of the meeting

whobbs1496 (whobbs1496@gmail.com)
2018-02-05 12:51:34

@jackchapman @violetadvani Cruz will not be at today’s meeting

andrew_peterson (peterand002@frogrock.org)
2018-02-09 10:41:55

I will need to leave the meeting today at 6:40

chrisrin (chrisrin@microsoft.com)
2018-02-09 23:15:26

4 Pcs - Lock Extension Table Bed Leg Feet Steel Folding Foldable Support Bracket Screw A https://www.amazon.com/dp/B0725X9HRR/ref=cm_sw_r_oth_api_RUPFAbD08MP1R https://www.amazon.com/dp/B0725X9HRR/ref=cm_sw_r_oth_api_RUPFAbD08MP1R

amazon.com
chrisrin (chrisrin@microsoft.com)
2018-02-09 23:15:56

@jack_chapman: here are those items

Kirsten_M (kirsten.martel@gmail.com)
2018-02-11 21:04:03

@andrewpeterson @SeanWilliams FYI, no climb with friend(s). After weighing the robot at 5pm, we don’t have the required weight to add forks/platform. The robot came in around 110 lbs and we needed 14 lbs for one set of liftings arms + stabilizers. That puts us over 120 lbs.

andrew_peterson (peterand002@frogrock.org)
2018-02-12 13:53:44

I will not be coming to the optional meeting today

chrisrin (chrisrin@microsoft.com)
2018-02-12 17:19:07

Had a thought of the “making lemonade from lemons” variety. What if we leave the two CIMs on there and try to be one of the fastest single climbers?

chrisrin (chrisrin@microsoft.com)
2018-02-12 17:21:46

Could leave gearboxes as is and change overall gear ratio by changing size of one sprocket on each side. Or switch to versaplanetaries with faster ratio.

rose_bandrowski (rose.bandrowski@gmail.com)
2018-02-12 17:41:03

@chrisrin Agreed why don't we keep the power?? We're not going over our weight limit yet so I say we keep it until we know we need the weigh for other more important things

andrew_peterson (peterand002@frogrock.org)
2018-02-12 18:34:44

With going with the faster climb, Would it be a good idea to incorporate the actuators then?

andrew_peterson (peterand002@frogrock.org)
2018-02-12 18:36:02

This will help to lower the climb time by keeping our chassis close to parallel with the ground below.

andrew_peterson (peterand002@frogrock.org)
2018-02-12 18:36:28

@Sean_Williams what do you think?

Sean_Williams (seanwilliams3.14@gmail.com)
2018-02-12 18:50:50

I don't think that it is necessary to have the actuators for climbing speed if we are climbing on our own. I'm In some respects, it could be better to not use them if there was a possibility of two bots climbing side by side (even though everyone says it won't happen, it was done in 2007). If added, we could simply not put them down. It also wouldnt be all to difficult to add them on. We could plan on adding them then not put them on, or leave them on as a needed basis. They weigh 2 pounds total.

Kenneth Wiersema (kcw815@icloud.com)
2018-02-12 20:03:48

I think weight is going to be a bigger issue than you’re all making it out to be, so let’s go with only one motor on the robot, and then see where we are later, before just going ahead and seeing were we need to remove later.

paul_vibrans (pvibrans@tscnet.com)
2018-02-12 20:40:41

Weight is a real serious problem and we surely will not climb with two friends. There is no reason to carry around the extra motor and gearbox that are needed to climb with the second friend. Calculations indicate that one motor and the existing gearbox will lift two maximum weight robots but the motor current is nearly 50 amperes, which raises the possibility of tripping a circuit breaker. Our strategy needs to change to include using the "power up" feature to get the third climb. There is a possibility that a fold-down frame on one side of the robot will come in at under 6 pounds, which is what we save by getting rid of the extra motor, gear and its foundation.

riyadth (riyadth@gmail.com)
2018-02-12 20:53:38

Our motor circuit breakers are 40A, which is the maximum allowed. What weight of 2nd robot (assuming ours is maximum) is the heaviest that we could lift and stay below 40A on the climbing motor?

chrisrin (chrisrin@microsoft.com)
2018-02-12 21:07:38

I thought “with friends” was cut. With so much still to do (programming, controls set up & tuning, driving, getting just climbing alone working), is it realistic to continue pursuing? That’s why I suggested pursuing fast single climb.

paul_vibrans (pvibrans@tscnet.com)
2018-02-12 21:43:37

All up weight of the second robot for 40A motor current is only 90 pounds, an unrealistic number. It would be better for us to replace the 15 tooth sprocket on the winch shaft with a 24 tooth sprocket that puts the motor current at 44A and stretches the climb time to 9 seconds. The breaker will not trip because of the inverse time characteristic of the trip curve. The Talon can handle 60A for short periods of time.

Fast single climb might work in our first match, but what is the strategy when the alliance has no climb with friends machine and two fast single climbers?

paul_vibrans (pvibrans@tscnet.com)
2018-02-12 21:50:29

With the gearing we have and one CIM, the time to climb is about 5.4 seconds and the current is about 25A.

paul_vibrans (pvibrans@tscnet.com)
2018-02-12 21:50:49

For just us.

chrisrin (chrisrin@microsoft.com)
2018-02-12 22:31:49

Sounds pretty good, thanks. There’s quite a bit still to do to enable climbing by ourselves - let’s focus on that and see if there is time for more. If there is not time, then next best option will be to be ready to utilize others’ climb with friends (or simultaneous climb on the side) solutions.

4915plane (4planejim@gmail.com)
2018-02-16 17:38:07

Climbing team, I can’t be there tonight. See you all on Saturday.

4915plane (4planejim@gmail.com)
2018-02-19 10:32:08

Hopefully we will see a climb test today, still need to figure out out how to keep the rope stored during the operation of the lift etc. thanks Chris for getting the splice instructions.

chrisrin (chrisrin@microsoft.com)
2018-02-19 10:48:47

Deleted those splice instructions - Ethan found the ones for the splice Paul had in mine & will share

coachchee (echee@bisd303.org)
2018-02-20 10:22:59

Order for more rope ?

chrisrin (chrisrin@microsoft.com)
2018-02-20 10:33:18

How much is left? I'd say yes because it looks to me like the rope is going to rub against the wire rope on the one side with the pulleys, which could cause it to wear. It may be a question of how fast will it wear.

jack_chapman (jwc10101@gmail.com)
2018-02-20 10:35:30

We have 4 lengths, 2 of which are about a foot too short, and 2 of which are a few feet too short

jack_chapman (jwc10101@gmail.com)
2018-02-20 10:35:43

And the 2 on the robot

chrisrin (chrisrin@microsoft.com)
2018-02-20 10:38:08

That solves it, yes order more. Jack, do you have the length we need? if not, please get it, and then let's order that length times 4 + a few feet extra. Sound good?

chrisrin (chrisrin@microsoft.com)
2018-02-20 10:38:49

or times 6 or 8 depending on how much back up we want to have

chrisrin (chrisrin@microsoft.com)
2018-02-20 12:36:35

FYI robot climbed

chrisrin (chrisrin@microsoft.com)
2018-02-20 12:36:41
jack_chapman (jwc10101@gmail.com)
2018-02-20 12:37:41

Yaay

chrisrin (chrisrin@microsoft.com)
2018-02-20 14:04:11

Ethan and I running late - also Ethan has doctor appt at 3:30

2018-02-26 21:20:16

@bill_bandrowski commented on @chrisrin’s file Climbing video: Very nice climb - great job!

chrisrin (chrisrin@microsoft.com)
2018-03-07 07:29:55

Here’s 254’s bot, including climb with friend similar to our team’s concept: https://www.chiefdelphi.com/forums/showthread.php?t=163577&highlight=254

dana_batali (dana.batali@gmail.com)
2018-03-07 08:03:32

looks like this file has been taken down...

chrisrin (chrisrin@microsoft.com)
2018-03-07 08:35:01

updated the link - thanks Dana

riyadth (riyadth@gmail.com)
2018-03-07 12:58:37

Similar to our concept, but all Nasa'd up! Carbon fiber friend lifter? LIDAR? And even a lovely paint job! Click through to their web page, and you can see high-resolution pictures of the robot. Interesting to see they use omni wheels at the corners for increased maneuverability.

bill_bandrowski (bill.bandrowski@gmail.com)
2018-03-07 16:06:15

looks like their hook and forklift mechanism are on the same side - how would that work?

riyadth (riyadth@gmail.com)
2018-03-07 16:11:46

I think they climb sideways, hooking over the square bar...

bill_bandrowski (bill.bandrowski@gmail.com)
2018-03-07 16:14:34
chrisrin (chrisrin@microsoft.com)
2018-03-07 16:25:08

I suspect maybe they climb either side box aluminum

whobbs1496 (whobbs1496@gmail.com)
2018-03-07 17:26:22

It looks like they can climb pretty much any way they want

Nora (wilsoele000@frogrock.org)
2018-03-07 17:39:19

The honey badger of robot climbing. It just does what it wants.

Harper Nalley (nalleluc000@frogrock.org)
2018-03-07 18:40:06

That tends to be 254’s style; if they want to do some thing, they do it.

Mark Tarlton (mtarlton@acm.org)
2018-03-14 08:51:47

One way to speed up our climb is to add a "pre-climb" function that will run the climb motor long enough to take up the slack in the rope. This could be started automatically when there's about 20 seconds left or by the drive team. Drivers need to keep in mind that one in preclimb, dropping the lift will pool rope in the chassis. If we fail to hook and have to retry, there's a chance this would cause a problem.

declan_freemangleason (declanfreemangleason@gmail.com)
2018-03-14 09:01:55

If we do that we will need some kind of feedback on the motor or drum (like a potentiometer or encoder.) Just let us know if that needs to be programmed (preferably sooner than later.)

paul_vibrans (pvibrans@tscnet.com)
2018-03-14 09:11:10

Spooling in should start just as soon as the scissor starts up to grab the rung and pause after a fixed number of winch revolutions. The counter could be a cam and a limit switch. Maybe the flats on the hex output shaft on the gear will serve as the cam.

jack_chapman (jwc10101@gmail.com)
2018-03-19 13:53:21

@channel I can't come to the meeting today, so here is a quick to do list, 1-3 are very important.

  1. Get rid of any gap between the drum and the bracket
  2. Change to 40:1 versaplanetary gearbox
  3. Make more pins
  4. Make the drum deeper, maybe even add grooves.
  5. Change to 40:1 versaplanetary gearbox
  6. Add a ratcheting system-500lbs holding strength
  7. Add 2 bars for others to climb on, elevated above the chassis at about the same height as the top of the sissor lift in lowest position, one on each side
paul_vibrans (pvibrans@tscnet.com)
2018-03-19 14:06:16

The 40:1 gear does not produce enough torque to lift 3 robots.

Smaller diameter drums can make up some for the reduced torque of the 40:1 gear but will slow the climb.

Bars for others to climb should be as high above the floor as the rules allow for autonomous. This may be lower than scissor lowest position. The bars need stays like a sailboat mast; the other robots will pull them sideways.

The bumpers will need to be strengthened because they are going to be the side guides if only one robot grabs on. Or you need to add side guides that engage the vertical support for the rung.

jack_chapman (jwc10101@gmail.com)
2018-03-19 14:08:14

The 40:1 would be for just us, others would climb when were at the top

paul_vibrans (pvibrans@tscnet.com)
2018-03-19 14:08:43

What about one bar off the back? No need for side guides then.

paul_vibrans (pvibrans@tscnet.com)
2018-03-19 14:14:21

If the friend climbs off the side, both winches need to be active because the hook on the friend's side must connect directly to a rope that carries tension. Otherwise the top of the scissor could get permanently twisted.

jack_chapman (jwc10101@gmail.com)
2018-03-19 14:20:20

One bar off the back does seem like a more feasible option, especially since weight is a little tight

Mark Tarlton (mtarlton@acm.org)
2018-03-19 14:45:36

Also keep in mind that the harvester arms are swinging backwards these days.

chrisrin (chrisrin@microsoft.com)
2018-03-19 14:45:46

to do so we'll need to climb high with a ratchet, correct? And we'll need to add a way to drop the bar back

Mark Tarlton (mtarlton@acm.org)
2018-03-19 14:46:46

Can the bar stay within the frame perimeter and still be available to other robots?

chrisrin (chrisrin@microsoft.com)
2018-03-19 14:48:44

no frame perimeter the last 30 seconds

jack_chapman (jwc10101@gmail.com)
2018-03-19 14:50:11

I don't think that a bar inside our frame perimeter would be accessible to most teams

Mark Tarlton (mtarlton@acm.org)
2018-03-19 14:58:12

I was asking to see if we really needed to drop the bar back or whether we could get by with a fixed bar. If we are off the ground where other teams could drive under our chassis, then perhaps we could offer a fixed bar that was still accessible.

jack_chapman (jwc10101@gmail.com)
2018-03-19 15:01:31

The problem is how far out a teams hooks are from their lifting mechanism. If the hooks are a bumpers length out, then the fixed bar soulution would work, if the hooks are closer than a bumpers length, then they wouldn't be able to hook on

jack_chapman (jwc10101@gmail.com)
2018-03-19 21:03:03

Progress?

whobbs1496 (whobbs1496@gmail.com)
2018-03-19 21:10:50

No work got done on the climber today

violet_advani (advanvio000@frogrock.org)
2018-03-21 11:52:51

@jack_chapman do you want me at the meeting to work on the climber?

Kenneth Wiersema (kcw815@icloud.com)
2018-03-21 11:54:08

We need to replace the climber motor, with the new versa-planetary. I’d focus on getting a group together for that.

jack_chapman (jwc10101@gmail.com)
2018-03-21 15:16:03

@violet_advani, if you could still?

violet_advani (advanvio000@frogrock.org)
2018-03-21 15:18:01

I can be there from 4-5:15

violet_advani (advanvio000@frogrock.org)
2018-03-21 15:18:40

But I don't really know how the versa-planetarys work

jack_chapman (jwc10101@gmail.com)
2018-03-22 08:04:42

Hey @paul_vibrans, we don't have any steel drill rod to make spare pins, and Themis seems to be really good at bending them, so if you could please make 2-3 more as spares?

violet_advani (advanvio000@frogrock.org)
2018-03-22 08:07:20

@jack_chapman did you check scrap?

jack_chapman (jwc10101@gmail.com)
2018-03-22 08:15:55

No steel drill rod that I could find in scrap

paul_vibrans (pvibrans@tscnet.com)
2018-03-22 08:16:47

I will see if I have any left

jack_chapman (jwc10101@gmail.com)
2018-03-22 08:17:28

Thank you

violet_advani (advanvio000@frogrock.org)
2018-03-22 08:18:47

@paul_vibrans if you bring the piece, I can machine it

chrisrin (chrisrin@microsoft.com)
2018-03-22 10:10:45

@paul_vibrans wasn't around to see the chain slipping on the climber. As I mentioned yesterday, I think a quick-and-dirty work around might be possible to tension the chain enough to avoid slipping (e.g. a strategically placed long bolt that creates a dip in the chain between the two sprockets), and I think Paul may have experience with how to do that. I recommend we consult him. It would be great to avoid chewing up a sprocket in the middle of GP and then having to scramble to fix it, because there are numerous other things people would like to spend robot time on (e.g. auto)

paul_vibrans (pvibrans@tscnet.com)
2018-03-22 12:47:05

Why did the chain get loose anyhow? I didn't think we were going to change the gear case, just the gears inside. I didn't check the VEX gearboxes for sustained high side loads on the output shaft but they aren't as strong as what we started with, which I did check. Not all gear sets are created equal. Can we change the ratio of the gear that was removed and put it back where it used to be working successfully?

paul_vibrans (pvibrans@tscnet.com)
2018-07-14 15:15:50

@paul_vibrans has left the channel

Cruz_Strom (cruzrstrom@gmail.com)
2018-10-17 17:32:06

@Cruz_Strom archived the channel